However, the extent to which this interaction is significant *in these systems* appears to be small and of secondary importance compared to metal-aryl σ bonding,⁷⁶ in contrast to previous suggestions.^{5,7,9,12,18-21} We therefore feel that arguments based on thermal stabilities of transition metal-aryl compounds (relative to the analogous alkyl derivatives) or on shortened metalcarbon bond distances⁷⁷ are without adequate support.

(76) Recent esr studies on $trans (p \cdot XC_{\delta}H_{4})_{2}CoL_{2}$ complexes (L = $P(C_{2}H_{5})_{2}C_{\delta}H_{5}$) support this contention; see K. Matsuzaki and T. Yasukawa, *Chem. Commun.*, 1460 (1968).

(77) Metal-*aryl* carbon bond lengths are known for a variety of transition metal-*aryl* complexes, ¹⁸⁻²⁷ but to date none of the corresponding metal-*alkyl* carbon distances have been determined. Instead the latter distances must be estimated from the appropriate metal-carbon covalent radii sum. Although the covalent radii of sp³ and sp² hybridized carbon are well established and roughly constant, metallic radii are influenced by (a) the effective charge on the metal nucleus, (b) the metal coordination number, (c) the coordination geometry, and (d) the electronic and steric requirements imposed by other ligands bonded to the metal.⁷⁸⁻⁸⁰ Until the corresponding metal-alkyl and metal-aryl distances are obtained in *completely analogous* complexes, the present crystallographic evidence for a strong contribution to the metal-aryl bond must be considered inconclusive.

(78) L. F. Dahl, R. J. Doedens, W. Hübel, and J. Nielsen, J. Amer. Chem. Soc., 88, 446 (1966).

(79) P. W. Sutton and L. F. Dahl, ibid., 89, 261 (1967).

It is possible, however, under certain circumstances involving metal-aryl complexes with ligands of generally low back-bonding abilities, that metal \rightarrow aryl π delocalization could have substantial importance. A similar conclusion can be drawn for other ligands. For example, 2,2'-bipyridyl can stabilize many low-valent complexes presumably by virtue of π back-bonding ability,⁸¹ yet this ligand seems to possess a vanishingly small back-bonding capacity in carbonyl complexes.⁵¹

Acknowledgment. We wish to thank Dr. L. C. Dickinson, Mrs. J. Newberry, Mr. A. Jones, and Mr. W. Goldberg for their assistance in obtaining the ¹⁹F nmr spectra. We acknowledge the financial support for this work from the National Science Foundation through Grant GP-8140, and fellowship support to R. P. S. from the University of Wisconsin Graduate School from a grant from the National Aeronautics and Space Administration.

(80) D. L. Stevenson and L. F. Dahl, *ibid.*, 89, 3721 (1967).

(81) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 2nd ed, Interscience Publishers, New York, N. Y., 1966, pp 755-756.

Nuclear Magnetic Resonance Investigation of Complexes Formed by Arsenic Pentafluoride and Some Very Weak Bases

M. Brownstein and R. J. Gillespie

Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada. Received August 27, 1969

Abstract: The ¹⁹F nmr spectra of the following systems have been studied over a range of temperature: $AsF_5-SO_2F_2$, $AsF_5-SO_2F_2$, As

I thas been shown recently that antimony pentafluoride forms complexes with the very weak bases SO₂FCl, SOF₂, SO₂, and CH₃SO₂F.¹ Although evidence has been obtained for stable complexes of arsenic pentafluoride with relatively strong bases such as CH₃CN,² (CH₃)₃N, and (CH₃)₂O,³ except for a study of the AsF₅-SO₂ system,⁴ in which it was concluded that no adduct formation occurred, there has been no investigation of the possibility of adduct formation with very weak bases. We have used ¹H and ¹⁹F nmr to investigate the interaction of AsF₅ with SO₂F₂, SOF₂, SO₂FCl, SO₂, and CH₃SO₂F.

Results and Discussion

The AsF₅-SO₂F₂ System. No complex formation occurs between AsF₅ and SO₂F₂ even at -140° . The

¹⁹F spectra of a 1:4.25 AsF₅:SO₂F₂ sample showed only a single F-on-S peak with the same chemical shift as that found for pure SO_2F_2 . The F-on-As peak was very broad (more than 1000 Hz at -35°) as for pure AsF₅, and in contrast to our findings for AsF₅ with stronger donors which form complexes. This result is not surprising as SO_2F_2 does not form any complex with SbF_{5} .¹ In fact in solution in SO_2F_2 , SbF_5 forms fluorine-bridged chains as in liquid SbF₅, rather than complex with SO_2F_2 . It is known from vibrational spectroscopy that AsF_5 is monomeric in the liquid as well as the gas phase⁵ so that in this case the formation of polymeric fluorine bridged chains does not compete with the formation of an $AsF_5 \cdot SO_2F_2$ complex. Since no interaction occurs, SO_2F_2 was used as a solvent for the other potential bases that were studied in order to obtain the nmr spectra at temperatures down to the freezing point of SO_2F_2 (-135.8°).⁶

(5) L. C. Hoskins and R. C. Lord, J. Chem. Phys., 46, 2402 (1967).
(6) F. J. Bockhoff, R. V. Petrella, and E. L. Pace, *ibid.*, 32, 799 (1960).

⁽¹⁾ P. A. W. Dean and R. J. Gillespie, J. Amer. Chem. Soc., 91, 7260 (1969).

 ⁽²⁾ F. N. Tebbe and E. L. Muetterties, *Inorg. Chem.*, 6, 129 (1967).
 (3) L. Lunazzi and S. Brownstein, *J. Magn. Resonance*, 1, 119 (1969).

 ⁽³⁾ L. Lunazzi and S. Brownstein, J. Magn. Resonance, 1, 119 (1969).
 (4) E. E. Aynsley, R. D. Peacock, and P. L. Robinson, Chem. Ind. (London), 117 (1951).

				1:0.79:3.8			1:2.3:6.2		
Temn °C	SOF.	As Shift	F ₅	SOF	Asl Shift	F₅ Width	SOF	Asl Shift	Width
				5012			5012		
6	-70.6	+62.5	240	- 71.5	+62.9	250	-71.4	+61.0	185
-6	<u> </u>	+61.7	230	-71.1	+62.0	160	-71.1	+59.5	110
-28	-66.6	+59.0	130	-66.8	+58.8	110	<u> </u>	+56.9	110
- 51	- 58.8	+57.7	130	- 59.8	+55.2	75	-65.9	+51.8	110
-76	-52.0	+57.0	75	-54.0	+52.5	60	-63.3	+49.4	50
-100^{b}	-48.6	+58.1	75	-50.8	+57.8	50	-62.0	+48.7	25
-125	-46.2	+ 57.5	60	- 45.7	+57.3	50			

^a Width of AsF₅ peak at half-height in Hz. ^b At -100° shift of pure SOF₂ = -73.5 ppm and shift of F on S in SbF₅·SOF₂ is -46.7 ppm.

The AsF₃-SOF₂-SO₂F₂ System. In addition to the SO₂F₂ solvent peak, only two lines were visible in the ¹⁹F nmr spectrum at all temperatures and for varying concentrations. The peak due to the fluorine in SOF₂ was a sharp singlet. The chemical shift varied over a range of 22 ppm from near that of uncomplexed SOF₂ when the sample was at $+20^{\circ}$ to near that of SOF₂ complexed by SbF₃ for a sample at -100° containing excess AsF₅ (Table I). The F-on-As peak was much narrower than for the AsF₅ solution in SO₂F₂. The chemical shift changed from near that of AsF₅ in SO₂F₂ (+63 ppm at -35°) for a sample at $+20^{\circ}$ to near the average value for F on As in the complex C₅H₃N·AsF₅⁷ for a sample at -100° containing excess SOF₂.

These results can be explained by assuming that, by analogy with the SbF_5 -SOF₂ system, a 1:1 complex is formed, but that in this case it is rather labile and is in equilibrium with its components (1). At room tempera-

$$AsF_{5} + SOF_{2} \longrightarrow AsF_{5} \cdot SOF_{2}$$
(1)

ture, the equilibrium lies far to the left, shifting to the right on cooling. The rate of formation and dissociation of the complex must be very rapid, as the F-on-SOF₂ peak remained narrow even at -125° .

The sharpness of the F-on-As peak is indicative of a much greater rate of quadrupole relaxation of the coupling between ⁷⁵As $(I = \frac{3}{2})$ and ¹⁹F than in AsF₅ alone. This is expected as the electric field gradient about the arsenic will be greater in the complexed molecule than in uncomplexed AsF₅, in which the very rapid intramolecular exchange of fluorine (pseudo-rotation) causes a rapid averaging of the electric field gradient to a very low value. In complexed AsF₅, there is a more symmetric octahedral arrangement of bonds about arsenic, but five are strong As-F bonds, while the sixth is the As-O complex bond. The resultant electric field gradient is likely to be larger than for the AsF₅ molecule.

The AsF₅-SO₂ClF System. In addition to the peak of SO₂F₂ present as an internal reference, only two single lines are visible in the ¹⁹F nmr spectrum at all temperatures (Table II). As in the AsF₅-SOF₂-SO₂F₂ system, the F-on-As peak was shifted downfield from that of AsF₅ in SO₂F₂, and its width was much less than for AsF₅ and decreased with decreasing temperature again indicating that there is an interaction with the SO₂ClF. However, even with a large excess of SO₂ClF, the AsF₅ peak did not shift as far as in the SOF₂ samples. These observations would indicate an equilibrium (2)

(7) $C_5H_5N \cdot AsF_5$: $F_{equatorial} = +41.0$ ppm, $F_{apical} = +82.7$ ppm, $F_{average} + 45.3$ ppm, from ref 2.

$$AsF_{5} + SO_{2}ClF \longrightarrow AsF_{5} \cdot SO_{2}ClF$$
(2)

lying farther to the left than in (1). This is in agreement with the finding that SO_2ClF is a weaker base than SOF_2 toward SbF_5 .¹

Table II. ¹⁹F Shift (ppm from CFCl₃) in AsF₅ · SO₂ClF^a

		AsF;		
Temp, °C	SO₂ClF	Shift	Width ^b	
+30°	-97.7	+61.0	100	
-20	-97.2	+58.8	84	
-35	-97.1	+ 57.5	88	
- 51	-96.8	+56.5	88	
- 68	-96.6	+55.2	80	
-85	-96.3	+53.9	56	
-100	-96.0	+52.8	44	
- 125		+52.0	46	

^a Converted from SO₂F₂ internal reference ($\delta_{SO_2F_2} = \delta_{CFC1_3} + 31.0 \text{ ppm}$). ^b Width of AsF₅ peak at half-height in Hz. ^c Shift of SO₂ClF at 30[°] = -97.7 ppm.

The AsF₅-SO₂-SO₂F₂ System. In addition to the SO₂F₂ solvent peak only a single sharp F-on-As peak was seen in the spectrum of a 1:2.0:5.7 AsF₅-SO₂-SO₂F₂ sample (Table III). The chemical shift as a func-

Table III. ¹⁹F Shift (ppm from $CFCl_3$) of AsF_5 in AsF_5 -SO₂-SO₂F₂^a

Temp, °C	Shift	Width, Hz	
6	+57.8	55	
-6	+56.3	55	
- 28	+53.2	50	
- 50	+51.0	50	
- 76	+49.9	50	
- 100	+49.6	48	

 $^{\alpha}$ Measured from solvent SO_2F2 and converted to CFCl3 using $\delta_{\rm SO_2F2}=\delta_{\rm CFC13}+31.0$ ppm.

tion of temperature and width of the peak are quite similar to that found for AsF_5 complexed to SOF_2 . In this case though, even at room temperature, the F-on-As resonance is not as close to uncomplexed AsF_5 as it is in an SOF_2 sample of similar ratio, indicating an equilibrium (3) shifted farther to the right than (1). This is con-

$$AsF_{5} + SO_{2} \longrightarrow AsF_{5} \cdot SO_{2}$$
(3)

sistent with the previous finding that SO_2 is a stronger

base than SOF_{2} .¹ It is not unexpected to find that SO_{2} interacts with AsF_{5} , since it has been shown that it forms a solid 1:1 complex with the even weaker Lewis acid BF_{3} , although there is considerable dissociation above the melting point.⁸

The AsF₅-CH₃SO₂F-SO₂F₂ System. In addition to the SO₂F₂ solvent peak only two lines are visible in the ¹⁹F nmr spectra at all temperatures and for varying concentrations. The chemical shift of the lines, the coupling constant $J_{\rm HF}$ in CH₃SO₂F, and the width of the F-on-As line indicates that complex formation is occurring. However, unlike the AsF₅-SOF₂ samples, the chemical shifts do not change appreciably with varying temperature (Tables IV and V).

Table IV. ¹⁹F Shift (ppm) of CH₃SO₂F^a

	— Sa r 1:0.	mple compo 65:8.5:0	sition, A 1:0.96	sF5:CH3SC	$D_{2}F:SO_{2}F_{2}:SO_{2}-$ 1:1.2:4.3:2.8	
Temp, °C	J _{HF} , Hz	Shift	J _{HF} , Hz	Shift	J _{HF} , Hz	Shift
-6 -12 -20 -28 -35 -43 -51 -59 -68	6.3 6.7 6.3	+3.63 +3.68 +3.75 +3.77	6.2 6.5 6.3 6.2 6.3 6.5 6.3 6.3 6.3	+3.49+3.50+3.52+3.61+3.65+3.63+3.61+3.58+3.56	6.0 6.2 6.0 6.2 6.2 6.2 6.3 6.3	+3.42+3.40+3.47+3.42+3.43+3.43+3.38+3.40
- 76 - 85			6.5 6.5		6.2 6.3	

^a Shift from CH₃SO₂F in SO₂F₂ (1:15) at the same temperature, both originally measured from solvent SO₂F₂.

Table V. ¹⁹F Shift (ppm from CFCl₃) of F in AsF₅ Complexed to $CH_3SO_2F^{\alpha}$

		e compo	sition, As 1:0.96:2	F₅:CH ₃ S .0:2.7	$O_2F:SO_2F$ 1:1.2:4	$F_2: SO_2 - 3:2.8$
Temp, °C	Shift	Width, Hz	Shift	Width, Hz	Shift	Width, Hz
- 28					+49.3	45
- 51	+50.9	45			+50.9	35
- 59			+50.6	38		
- 68	+53.9	45	+50.0	42		
- 76					+50.5	70
- 85			+49.8	30		
-100					+41.5	250

 a Measured from solvent SO_2F_2 and converted using $\delta_{SO_2F_2}=\delta_{CFC1_3}+31.0$ ppm.

The position of F on CH₃SO₂F shifts upfield in the complex even further than in the SbF₅·CH₃SO₂F complex (+2.1 ppm). The coupling constant $J_{\rm HF}$ in CH₃-SO₂F increases from 5.3 Hz for uncomplexed CH₃-SO₂F to 6.3 Hz for the complex AsF₅·CH₃SO₂F. This again parallels the behavior of SbF₅·CH₃SO₂F for which $J_{\rm HF}$ increases to 6.8 Hz. With less than a stoichiometric amount of AsF₅, the changes in the chemical shift and $J_{\rm HF}$ were correspondingly less. For samples containing large amounts of CH₃SO₂F, SO₂ was added in order to ensure that the system remained homogenous. This SO₂ did not have any effect on the

(8) H. S. Booth and D. R. Martin, J. Amer. Chem. Soc., 64, 2198 (1942).

spectra showing that it is a weaker base than CH_3SO_2F toward AsF_5 as it also is toward SbF_5 .¹ Similar changes in chemical shifts and coupling constants were observed in the proton spectra (Table VI). The proton resonance shifts farther to lower field for the complex with SbF_5 than with AsF_5 , presumably due to the greater electron withdrawing ability of SbF_5 . This is similar to earlier findings with complexes of stronger bases with PF_5 and AsF_5 .³

Table VI. ¹H Shift (ppm from TMS) of CH₃SO₂F

	Sample composition						
	CH ₃ SO ₂ F	SO_2F_2	AsF ₅ :CH ₃ SO ₂ F:SO ₂ F ₂				
			SO ₂ 1:0.96:2.0:2.7				
		5					
		$J_{ m HF}$,		$J_{ m HF}$,			
Temp, °C	δ	Hz	δ	Hz			
+30°	-2.50	5.0	-3.13	6.4			
-20	-2.61	5.5	-3.36	6.0			
-37	-2.50	5.5	-3.30	6.5			
- 55	-2.70	5.5	-3.25	6.5			
Av	-2.58	5.3	-3.26	6.3			

^a CH₃SO₂F in SbF₅·CH₃SO₂F, $J_{\rm HF} = 6.8$ Hz, $\delta = -3.71$ at $+30^{\circ}$.

The absence of changes in the chemical shift and in the coupling constant with temperature indicate that the CH_3SO_2F is essentially fully complexed even at $+20^\circ$. However, there is still a very labile exchange occurring, as evidenced by the single CH_3SO_2F peak, and the lack of any fine structure in the AsF_5 peak.

Conclusions

Arsenic pentafluoride forms very labile complexes with SOF₂, SO₂ClF, SO₂, and CH₃SO₂F. The lability of these complexes suggests that AsF₅ is a weaker acid toward these bases than is SbF₅. Sulfuryl fluoride was found to act as an inert diluent for AsF₅. The donors considered were found to have the following base strengths toward AsF₅: CH₃SO₂F > SO₂ > SOF₂ > SO₂ClF > SO₂F₂. This is the same order of base strength that had been previously found toward SbF₅.¹ In that work the hexafluoroantimonate ion was found to be a stronger base than CH₃SO₂F toward SbF₅. The hexafluoroantimonate ion has also been shown to complex with AsF₅.⁹

Experimental Section

Fluorine nmr spectra were measured using a Varian DA-60IL spectrometer operating at 56.4 MHz. The 2500-Hz audio-modulation side bands forming part of the base line stabilization circuitry of the instrument usually overlapped part of the centerband spectrum, and the lock box was therefore modified to take an external manual oscillator frequency from a Muirhead D-890-A audio frequency oscillator. Spectra were then measured using the first upper side band in the field sweep unlock mode. Fluorine chemical shifts were measured from CFCl₃, contained in a sealed capillary within the sample tube. In some cases, and particularly below the freezing point of CFCl₃, shifts were measured from solvent SO_2F_2 , and converted to shifts from CFCl₃ by means of the relation $\delta_{SO_2F_2}$ = δ_{CFC1_3} + 31.0 ppm. Low-temperature spectra were obtained using a Varian V4540 temperature controller with the low temperature probe. Proton spectra were measured using a Varian A-60 spectrometer.

⁽⁹⁾ S. Brownstein, Can. J. Chem., 47, 605 (1969).

Materials. The purity of the arsenic pentafluoride (Ozark Mahoning) was checked by determining its ir spectrum in a 10-cm Monel gas cell with silver chloride windows. No extraneous bands were found so it was used without further purification.

Sulfuryl fluoride (Matheson of Canada Ltd.) and thionyl fluoride (Peninsular ChemResearch Inc.) showed only one line in their ¹⁹F nmr spectra and were used without further purification. Anhydrous grade sulfur dioxide (Matheson of Canada Ltd.) was used without further purification. Methyl sulfuryl fluoride (Eastman Organic Chemicals) was distilled, and the middle cut was stored over molecular sieves. Sulfuryl chlorofluoride was prepared from potassium fluorosulfinate and chlorine according to Seel and Riehl.¹⁰ In order to remove some sulfur dioxide impurity, it was condensed onto antimony pentafluoride and subsequently distilled off. Sulfur dioxide forms a much stronger complex with antimony pentafluoride than does sulfuryl chlorofluoride, and remains be-

(10) F. Seel and L. Riehl, Z. Anorg. Allg. Chem., 282, 293 (1955).

hind.¹ The gas-phase ir spectrum of the final product showed no bands due to sulfur dioxide.

Sample Preparation. Known amounts of gases were condensed into an nmr tube from a calibrated vacuum line and the tube was sealed. If one of the components was CH₃SO₂F, a known weight was added from a hypodermic syringe, prior to placing the tube on the vacuum line.

Acknowledgments. We thank the Directorate of Chemical Sciences of the United States Air Force Office of Scientific Research and the National Research Council of Canada for financial support of this work. One of us (M. B.) also thanks the National Research Council of Canada for the award of a scholarship. We are grateful to Mr. J. I. A. Thompson for technical assistance with the nmr spectrometer and Dr. P. A. W. Dean who prepared the sample of AsF₅-SO₂ClF.

The Crystal, Molecular, and Electronic Structure of Bisacetatobis(ethylenethiourea)cobalt(II)

E. M. Holt,^{1a} S. L. Holt,^{1a,b} and K. J. Watson^{1c}

Contribution from the Department of Chemistry, Polytechnic Institute of Brooklyn, Brooklyn, New York 11201, and the Department of Physical Chemistry, Chemical Laboratory IV, H. C. Ørsted Institute, Copenhagen, Denmark. Received September 25, 1969

Abstract: The crystal and molecular structure of bisacetatobis(ethylenethiourea)cobalt(II) $[CoS_2O_4C_{10}N_4H_{18}]$ has been determined using three-dimensional X-ray data collected by counter methods. The structure has been refined by least-squares methods to a conventional R factor of 0.061 (based on anisotropic temperature factors). This complex crystallizes in the orthorhombic system in space group D_{2h}^{14} -Pbna with 4 molecules in a unit cell of dimensions $a = 12.460 \pm 0.041$, $b = 13.550 \pm 0.036$, and $c = 9.393 \pm 0.032$ Å. The geometry about the cobalt is distorted tetrahedral with two normal cobalt-sulfur, two normal cobalt-oxygen, and two long cobalt-oxygen bonds. The 80°K polarized spectrum of this compound is also presented and rationalized in terms of pseudo-tetrahedral symmetry modified by next-nearest-neighbor interactions. The room-temperature polarized spectrum of bisacetatobis-(thiourea)cobalt(II) is also presented.

A lthough much attention has been given in recent years to the correlation of crystal field calculations with experiment,² to the source of intensity of spectral lines in trigonally distorted complexes,³ and to the identification of structure types through absorption spectroscopy,⁴ little has been said about systems in which the transition metal ion finds itself in an environment which deviates greatly from idealized, tetrahedral, octahedral, etc., symmetries. That this is an important problem has recently been pointed out.⁵

In a study of complexes of cobalt(II) with ethylenethiourea (etu) it was found impossible to definitely assign a structure to the complex $Co(etu)_2(CH_3COO)_2$ on the basis of its spectrum and magnetism. It was finally concluded that the acetate groups were coordinated in a bidentate fashion and that the overall geometry was octahedral.

In order to check the accuracy of this structural assignment we have completed a determination of the crystal and molecular structure of the compound in question. We have also furthered our investigations by examining the electronic structure of Co(etu)₂- $(CH_{3}COO)_{2}$.

Experimental Section

Fisher Reagent grade Co(CH₃COO)₂.6H₂O and Reagents. $Zn(CH_3COO)_2 \cdot 6H_2O$ were used without further purification. Ethylenethiourea was obtained from K & K and recrystallized twice from H₂O. Reagent grade thiourea was obtained from Fisher Scientific and used as received.

Crystal Growth and Preparation. Mixed crystals of the isomorphous Zn- and Co-etu compounds suitable for optical measurements were grown from hot aqueous solution which had been acidified with a small amount of acetic acid. Single crystals of Zn-(tu)₂(CH₃COO)₂ containing small amounts of Co were prepared in a manner analogous to that used for the etu complex. Crystals of

^{(1) (}a) Polytechnic Institute of Brooklyn; (b) author to whom correspondence should be addressed at the Chemistry Department, University of Wyoming, Laramie, Wyo. 82070; (c) H. C. Orsted Institute.

⁽²⁾ J. Ferguson, Rev. Pure Appl. Chem., 14, 1 (1964), and references therein.

⁽³⁾ I. M. Walker and R. L. Carlin, J. Chem. Phys., 46, 3931 (1967);

^{R. Dingle and R. A. Palmer,} *Theor. Chim. Acta*, 6, 249 (1966).
(4) C. K. Jorgensen, "Absorption Spectra and Chemical Bonding in Complexes," Pergamon Press, London, 1962.

⁽⁵⁾ R. L. Carlin and S. L. Holt, Jr., Inorg. Chem., 2, 849 (1963).